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SUMMARY 

Continuous measurements are often dichotomized for classification of subjects. This paper evaluates two 
procedures for determining a best cutpoint for a continuous prognostic factor with right censored outcome 
data. One procedure selects the cutpoint that minimizes the significance level of a logrank test with 
comparison of the two groups defined by the cutpoint. This procedure adjusts the significance level for 
maximal selection. The other procedure uses a cross-validation approach. The latter easily extends to 
accommodate multiple other prognostic factors. We compare the methods in terms of statistical power and 
bias in estimation of the true relative risk associated with the prognostic factor. Both procedures produce 
approximately the correct type I error rate. Use of a maximally selected cutpoint without adjustment of the 
significance level, however, results in a substantially elevated type I error rate. The cross-validation 
procedure unbiasedly estimated the relative risk under the null hypothesis while the procedure based on the 
maximally selected test resulted in an upward bias. When the relative risk for the two groups defined by 
the covariate and true changepoint was small, the cross-validation procedure provided greater power than 
the maximally selected test. The cross-validation based estimate of relative risk was unbiased while 
the procedure based on the maximally selected test produced a biased estimate. As the true relative risk 
increased, the power of the maximally selected test was about 10 per cent greater than the power obtained 
using cross-validation. The maximally selected test overestimated the relative risk by about 10 per cent. The 
cross-validation procedure produced at most 5 per cent underestimation of the true relative risk. Finally, we 
report the effect of dichotomizing a continuous non-linear relationship between covariate and risk. We 
compare using a linear proportional hazard model to using models based on optimally selected cutpoints. 
Our simulation study indicates that we can have a spbstantial loss of statistical power when we use cutpoint 
models in cases where there is a continuous relationship between covariate and risk. 

1. INTRODUCTION 

In many areas of medicine there is substantial interest in the identification of biological markers 
that can serve as prognostic or treatment selection factors. For example, a review of the search for 
prognostic indicators in patients with primary breast cancer is given by Gasparini et al.' Many 
markers are measured in laboratory assays as continuous variables. However, staging systems 
and clinical trial eligibility criteria generally require the expression of prognostic factors as 
categorical variables. For example, children with neuroblastoma who have amplification of the 
n-myc gene may be treated on a different protocol than other children. 

A common practice is t o  choose a cutpoint that defines two risk groups for a continuously 
measured marker. The selection of a cutpoint often involves examination of different potential 
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cutpoints and choice of the one that minimizes the p-value associated with a comparison of 
outcome among patients with values above and below the cutpoint. 

Several authors have pointed out that use of the same data to define the cutpoint and to 
evaluate statistical significance of the marker may produce distorted results. Hilsenbeck et a1.’ 
addressed this issue in relation to the question why the ‘significance’ of many prognostic markers 
is not confirmed in follow-up studies. They performed a simulation study to illustrate the high 
type I error rate that results from a simple search for the best cutpoint and subsequent declaration 
of the minimum p-value as significant if less than 5 per cent. They found that the type I error was 
about 25 per cent with 15 cutpoints examined and could reach 40 per cent when the number of 
cutpoints exceeded 50 for a two-sided test. They recommended use of a split sample approach. 
With the split sample approach one establishes the cutpoint with one part of the data and tests it 
with the other part. Silvestrini et aL3 adopted this approach to evaluate p53 as an independent 
prognostic marker in breast cancer patients without axillary node involvement. The analysis 
entailed data from 256 patients, with 85 per cent of the data used to select the cutpoint and the 
remainder used for validation. 

Lausen and Schumacher4 provided a method for adjusting the a-level of the logrank test5 for 
the use of a maximally selected cutpoint. Their method applies to survival data and is an 
extension of the method of Miller and Sigmund6 for the maximally selected chi-square statistic in 
2 x 2 tables. Altman et al.’ provided a simple approximation to the Lausen and Schumacher 
correction. Although this approach corrects the type I error of the procedure, the estimation of 
the relative risk for the patients with marker values above and below the maximally defined cutoff 
remains biased. 

To correct both the significance level and estimated relative risk, we propose a cross-validation 
approach’ to select the cutpoint for continuous variables. The cross-validation procedure, in its 
simplest form, splits the data randomly into two halves, denoted by parts I and 11. We select the 
cutpoint that minimizes the p-value on part I. Using this cutpoint, we assign all observations in 
part I1 to either group A (covariate above the cutpoint) or group B (covariate below the cutpoint). 
We then repeat the selection of a cutpoint on part I1 and use that cutpoint to assign all 
observations in part I to either group A or B. Once the procedure is completed each observation 
belongs to either group A or B. We then compute the two-sided stratified logrank test to 
determine if there is a significant difference between the risk groups. Complete details of the 
proposed method appear in Section 4. We conducted a simulation study using various cross- 
validation schemes to evaluate the size and power of the procedure. We compare the results from 
the cross-validation procedure with those obtained from the maximally selected logrank statistic 
with use of simulated data generated from a variety of changepoint models and under the null 
hypothesis. We provide the results for the simulation when the true changepoint is known, to 
serve as a baseline for the comparisons. We also performed a simulation with data generated from 
the Cox proportional hazards model’ in which the covariate value influences hazard by a con- 
tinuous logistic function. We compare the cross-validation cutpoint procedure to the adjusted 
a level method and to the use of a proportional hazards model based on the assumption of 
a linear relationship between covariate value and log hazard. 

2. EFFECT OF OPTIMALLY SELECTED CUTPOINT O N  TYPE I ERROR 

We began by evaluating the implications of naively using a set of data to both determine an 
optimally selected cutpoint for a covariate and for performing two sample significance tests 
comparing outcomes among groups defined based on that cutpoint. We generated 100 survival 
times from an independent and identically distributed (i.i.d.) exponential distribution, ti - exp( 1)  
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MINIMUM P-VALUE 

Figure 1 .  Minimal p-value distribution on 10,OOO simulations 

i = 1, ... , 100, and for each case a covariate x i  that is uniform [0,1] and independent of ti. For 
each simulated sample we performed an incremental search for the best cutpoint of x. Starting 
with a cutpoint value of 0.1 for the covariate, we grouped all observations that have the covariate 
value of less or equal to 0 1  into one risk group. Similarly we grouped all observations that have 
covariate value larger than 0.1 into the other risk group. Once we defined the risk groups, we 
performed the logrank test and calculated the two-sided p-value. We repeated this with an 
incremental increase of 0.05 in the definition of the cutpoint until we reached the value of 0.9 for 
the cutpoint. The best cutpoint was the one that achieved the minimum p-value. Figure 1 
displays the histogram of the minimum p-values for 10,000 simulations. The width of each bar in 
the histogram is 0.005. Hence, for example, from the first bar we observe that the probability that 
the minimum p-value is in the range [0,0405] is 0.043. Since we had constructed this example 
under the null hypothesis that survival time and covariate value are independent, one might 
expect a uniform distribution of the p-values over [0,1]. Figure 1 displays a strikingly non- 
uniform distribution of the minimum p-value. The probability that the minimum p-value is less 
than 005 is about 0.24. 

3. MAXIMALLY SELECTED LOGRANK STATISTIC 

Lausen and Schumacher; following Miller and Sigmund,6 derived the asymptotic null distribu- 
tion of the maximally selected two-sided logrank test. Let [ E ,  1 - E ]  0 < E < 1, denote the range of 
quantiles of the prognostic factor values considered as cutpoints. Lausen and Schumacher 
restricted the search for the cutpoint to [ E ,  1 - E] rather than [0,1] to utilize an asymptotic 
argument and to provide a reasonable amount of data in both groups. A correction to the logrank 
p-value is 

where z is the (1 - Pmi,/2)-quantile of the standard normal distribution, Pmin is the minimum 
logrank p-value obtained from the search and 4 denotes the standard normal density function. 
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Altman et aL7 provided a simple approximation to (1). For example, for E = 0.1 the approxima- 
tion is 

P,,,, z - 1.63P,in(l + 2.351 IOgP,i,). (2) 

They showed that this approximation is quite accurate for 0.0001 < Pmin 6 0.1. Using approx- 
imation (2) we obtain that for P,,,, < 0.05 we require Pmin < 0.002. 

In addition to testing significance of the covariates on survival, one generally wishes to estimate 
the magnitude of the effect. This is usually accomplished by plotting the Kaplan-Meier curves for 
the subsets of patients with covaraite values above and below the selected cutoff value and 
computing the relative risk for these two curves. As indicated by Altman et aL7 although use of (2) 
will correct the size of the test, the Kaplan-Meier curves overestimate the true covariate effect on 
survival. 

4. CROSS-VALIDATION 

One can use cross-validation to evaluate the significance of the optimally selected cutpoint and to 
estimate the relative risk. In general, a cross-validation procedure randomly splits the data into 
v sets of similar size. Leaving one set out, one estimates the parameters of interest using the 
remaining v - 1 sets. One then uses the estimates to  categorize or predict observations in the 
omitted set. For example, ten-fold cross-validation ( v  = 10) randomly splits the data into ten 
parts of similar size. Ten times one uses 9/10 of the data for estimation and each time applies the 
estimates to the omitted l/lOth of the data. 

To illustrate the procedure for cutpoint selection consider the two-fold cross-validation 
scheme: 

1. Randomly split the data into two halves (denote the two subsets by I and 11). 
2. Estimate the cutpoint that minimizes the p-value for the two-sided logrank test using 

3. Using the cutpoint obtained in step 2, assign each observation in subset I1 to either group 

4. Estimate the cutpoint that minimizes the p-value for the two-sided logrank test using 

5. Using the cutpoint in step 4, assign each observation in subset I to either group A (covariate 

subset I. 

A (covariate above cutpoint) or B (covariate below cutpoint). 

subset 11. 

above cutpoint) or B (covariate below cutpoint). 

Once the procedure is complete, all the observations in the sample have been assigned to either 
group A or B. We then compute the logrank statistic stratified by subset I and 11. The key feature 
is that the cutpoint used to categorize each observation has been optimally selected from a subset 
that excludes the observation. 

To estimate the relative risk, we used the Mantel-Haenszel hazard ratio estimator. Assume that 
x is a binary covariate with nA patients having level A and nB patients having level B. Denote the 
hazard rate at time t ,  for the patient with covariate level A, as hA(t). The proportional hazards 
model’ assumes that 

h H ( t )  = exp(D)hA(t) (3) 

where hB(t) is the hazard rate of patients with covariate at level B. Assume that there are k distinct 
times of death with no ties. We can write the k failure times as t l  < t 2  < ... < ti < ... < tk, and 
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represent the data as a series of k 2 x 2 tables5 The ith table corresponding to ti is 

Died Survived Total 

Covariate at level A 1 - x i  nAi - 1 + x i  nAi 

Covariate at level B Xi nEi - xi h i  

Total 1 ni - 1 n i  

where xi = 0 if the patient that died had covariate level A, and xi = 1 if the level was B. The 
Mantel-Haenszel hazards ratio estimate" is 

In Section 5 we use the reciprocal of the Mantel-Haenszel estimator to estimate the true relative 
risk in the simulation study. 

Note that the cross-validation procedure is likely to provide different values of the 'optimal' 
cutpoint for subsets I and 11. The procedure provides a categorization of each observation as 
either above or below the optimal cutpoint in the opposite subset. We calculate the stratified 
logrank statistic and the estimate of the relative risk for the two groups based on this binary 
categorization of all covariate values. The final cutpoint suggested for clinical use is, however, the 
one that optimizes the logrank statistic for the entire combined sample without cross-validation. 
Cross-validation serves to assess the significance of the cutpoint and to estimate the relative-risk 
associated with it. The fact that we might have used two cutpoints in the cross-validation has no 
relevance, however, for subsequent categorization of the covariate. 

We investigated different u-fold cross-validation schemes in the simulation study. We investig- 
ated ten-fold, four-fold and two-fold schemes all with equal or approximately equal subsets of size 
200/u. We found that we obtained the best results in terms of the size of the test with use of 
two-fold cross-validation. Other cross-validation schemes produced type I error rates that 
exceeded the nominal value. For example, the ten-fold cross-validation procedure produced 
type I errors of about 11 per cent when the nominal value was 5 per cent. Thus, in Section 5 we 
report only the results for two-fold cross-validation. 

5. SIMULATION STUDY 

5.1. Dichotomized Covariate 

We generated samples of 200 survival values using the Weibull survival distribution 
S ( t )  = e-[(''')"" and by varying the shape parameter y = 1/3, 1/2, 1 (exponential) and 2. We 
generated the covariates from the uniform [O, 11 distribution, independently of the survival times 
under the null hypothesis. Since varying the shape parameters of the Weibull distribution had 
little effect on the results, we report here only the results from the exponential distribution (y = 1). 
Under the alternative hypothesis we generated two risk groups. If the covariate value of an 
observation was smaller than the true prespecified changepoint, we assigned the observation to 
the low risk group. If the value of covariate corresponding to the observation was larger than the 
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changepoint, we assigned the observation to the high risk group. We set the scale parameter 1 of 
the survival distribution as 1 = 1 for the high risk group. To generate observations for the low 
risk group, we chose 1 so that the true relative risk (TRR = l/Ay) between the two groups was 
fixed at the same values for different choices of the shape parameter y. We chose these TRR values 
to be 1*1,1.2,1.5 and 2.0. We also performed simulations that included random censoring with the 
procedure. Since the effect of censoring was to reduce the effective sample size with little change in 
the relative performance of the procedures investigated here, we report only the results without 
censoring. 

We compared three procedures: 

1. A procedure in which the true changepoint used to generate the survival values is also used 

2. Optimal selection of the best cutpoint while correcting the p-value of the maximally selected 

3. Two-fold cross-validation (CV). 

All entries in the tables are averages over 1000 replications; in parenthesis we provide the 
standard errors of the averages. In all simulations we conducted a search for the best cutpoint 
over the range 0.10 to 0.90, using an increment of 005, on the uniformly [0,1] distributed 
covariate. We calculated the logrank test only when both groups defined by the cutpoint had at 
least 15 observations. We applied this restriction because the logrank p-values are based on 
asymptotic normality. 

As mentioned, the cross-validation procedure may result in estimation of two different 
cutpoints for the two halves of the data. In our simulations we calculated the mean of the absolute 
value of the difference between the two cutpoints and its standard error. These statistics were 
quite invariant across simulation experiments. For example, the mean absolute difference when 
the true changepoint was 0.2 (0.5) was 0.233 (0.205) with standard error of 0.006 (0.005). We 
emphasize that we provide the information on the difference in cutpoints for illustrative purposes 
only. We recommend the use of the cross-validation procedure only for testing the significance of 
the cutpoint and estimation of the hazard ratio. Once one has established the cutpoint as 
significant via the cross-validation procedure, one should use the full sample to establish a unique 
cutpoint for subsequent use. This cutpoint is selected in the following way. For each candidate 
cutpoint, all observations in the full sample are categorized as being above or below the cutpoint. 
One then computes a logrank p-value for this partition of the full sample into two groups. This 
process is repeated for all candidate cutpoints. The cutpoint which is associated with the smallest 
logrank p-value is selected to be recommended for future use. 

When we generated the survival times independently of the covariate, all procedures provided 
type I error rates close to the correct nominal value of 5 per cent. The estimated relative risk using 
the simple search (MS) was positively biased by approximately 19 per cent with a standard error 
of approximately 2 per cent. The relative risk estimate obtained from cross-validation was 
approximately unbiased. The estimated bias was 1 per cent with a standard error of approxi- 
mately 1 per cent. 

Table I gives statistical power results for different true changepoints and relative risk values. 
For the maximally selected logrank statistic (MS) we used the adjusted p-values (equation (2)) to 
determine when to reject the null hypothesis. 

The rows in Table I correspond to different values of the true relative risk (TRR) used to 
generate the data. For example, the first row in the table indicates TRR of 1.1. That is, for 
a preselected true changepoint, we evaluated the covariate value for each observation. If the 
covariate value was less than or equal to the true changepoint, we assigned the observation to the 

for analysis (TR). 

logrank test with use of equation (2) (MS). 
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Table I. Power for the Weibull distribution simulated data with y = 1 using different cutpoints and different 
true relative risk (TRR) values 

TRR 
0.2 

~ 

True changepoint 
0.3 0.5 

TR MS cv TR MS cv TR MS cv 
1.1 0.099 0.069 0.094 0.092 0.079 0-098 0.094 0.073 0.098 

(0.021) (0.013) (0.020) (0.020) (0.014) (0.021) (0.021) (0.014) (0-021) 

(0.028) (0.018) (0.024) (0.031) (0.020) (0.026) (0.032) (0.020) (0-026) 

(0.034) (0.032) (0.034) (0.03 1) (0.035) (0.035) (0.028) (0035) (0.035) 

2.0 0.977 0.830 0.791 0.993 0.956 0.916 0.999 0.960 0-953 
(0.01 1) (0.028) (0.033) (0.006) (0.018) (0.020) (0.002) (0.014) (0.015) 

1.2 0.199 0.121 0137 0.259 0.131 0.157 0.264 0132 0161 

1.5 0.624 0.428 0.379 0.734 0.523 0.501 0.803 0603 0.579 

TRR denotes true relative risk. The TR (true) method uses a logrank test comparing outcome between the groups defined 
based on the true changepoint. The MS (maximally selected) method identifies the cutpoint that provides the maximum 
value of the logrank statistic and adjusts the significance level for the process of maximal selection. The CV (cross- 
validation) method determines a maximally selected cutpoint in a subsample and uses it  to categorize observations in the 
other subsample. The table shows estimates of statistical power determined by computer simulation and the standard 
errors of the estimates 

high risk group generated from the Weibull distribution with scale parameter 2 = 1. 
If the covariate value was larger than the true changepoint, we assigned the observation to 
the low risk group and we chose A so that the true relative risk between the two groups 
was 1.1. 

Table I shows that for TRR = 1.1 the power obtained from cross-validation exceeds the power 
obtained using the maximally selected test and is close to the power obtained when we used the 
true changepoint that defined the risk groups. For TRR = 1.2 the power results obtained from 
the CV procedure are higher than those obtained from the MS procedure, although these 
differences are not as great as those obtained for TRR = 1.1. With both of these relative risk 
values, however, the power is quite low. For TRR = 1.5, the power achieved by the MS procedure 
is about 10 per cent larger than that obtained from the CV procedure. When the true relative risk 
between the two groups is 2.0, the power is reasonable for all of the methods, with some 
superiority ( 5  per cent) with use of MS. In almost all cases, the statistical power is considerably 
less for MS or CV than that which would be possible if the true value of the changepoint were 
known. 

Table I1 shows the mean estimated relatives risks and their standard errors for the three 
procedures. For TRR = 1.1 the estimated relative risks obtained from the CV procedure are close 
to true values while the MS procedure produces an upward bias in estimation of about 15 per 
cent. For TRR = 1.2 the estimated relative risks using CV are also close to the true values while 
the relative risks estimated by the MS procedure are biased upwards by about 10 per cent. For 
TRR = 1.5 the relative risks estimated by the MS procedure are again biased upwards by about 
10 per cent while there is a downward bias of about 5 per cent with use of the CV procedure. For 
TRR = 2.0, the results are similar to those obtained for TRR = 1.5. The upward bias in 
estimation using the MS procedure is about 10 per cent and about twice as great as the downward 
bias in estimation using the CV procedure. 
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Table 11. Estimated relative risk for the Weibull distribution simulated data with y = 1 using different 
cutpoints and different true relative risk (TRR) values 

TRR True changepoint 
0.2 0.3 05 

TR MS cv TR MS cv  TR MS cv  
1.1 1.13 1.26 1.09 1.09 1.29 1.10 1.11 1.28 1.11 

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01) (0.02) (0.02) 

1.2 1.23 1.36 1.17 1.23 1.36 1.18 1.22 1.34 1.19 
(002) (0.02) (0.03) (0.01) (0.02) (0.02) (0.01) (0.02) (002) 

1.5 1-55 1.62 1.43 1.52 1.63 1.45 1.51 1.63 1.45 
(0.02) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

2.0 2.07 2.12 1.92 2.04 2.12 1.95 2.03 2.11 1.93 
(0.03) (0.03) (0.04) (0.02) (0.03) (0.03) (0.02) (0.02) (0.03) 

TRR denotes true relative risk. The TR (true) method uses a logrank test comparing outcome between the groups defined 
based on the true changepoint. The MS (maximally selected) method identifies the cutpoint that provides the maximum 
value of the logrank statistic and adjusts the significance level for the process of maximal selection. The CV (cross- 
validation) method determines a maximally selected cutpoint in a subsample and uses it to categorize observations in the 
other subsample. The table shows estimates of relative risk determined by computer simulation and the standard errors of 
the estimates 

5.2. Continuous Covariate 

We also conducted a simulation experiment in which the true model had relative risk as 
a continuous function of the covariate value rather than a step function. We generated 200 
survival values using the Weibull survival distribution S ( t )  = e-[('/"'']". We generated the covari- 
ates from the uniform [ - 1, 11 distribution, independently of the survival times under the null 
hypothesis. To generate the risks (Ai)  we used the logistic function li  = e"/[' +exp(-xiS)l) with 
c = ln(l.5) or c = ln(2.0) so that when xiB = - 00, Izi  = 1 and when xifi = + co, Izi = 1.5 (2.0). 
Hence the relative risk at the extreme is 1-5 (2.0). We also varied B to obtain 
the relation between the value of the covariate and the risk from close to a linear relation (B = 1) to 
a step function (B = 00). We performed simulations with shape parameter y = 1/3, 1/2, 1 and 2. Since 
varying this parameter had little influence, we report only results for the exponential distribution 

Table I11 provides the statistical power estimated from the simulations that compared three 
models. The Cox proportional hazards model (PH) that uses a linear relation between the 
covariate and the risk, the maximally selected procedure (MS), and the cross-validation technique 
(CV) that dichotomizes the risk into two groups. The results are given for p = 1, 10 and 20. We 
also provide in the table the standard error of the power estimates. From Table I11 we can see that 
when p = 1, that is, the relationship between the risk and the covariate is close to a linear relation, 
and c = ln(l.5) there is 28 per cent loss of power (0.147 versus 0-106) when we compare the 
proportional hazards model with the cross-validation. The loss of power is even greater (55 per 
cent) when we compare the proportional hazards model with the maximally selected procedure 
(0.147 versus 0066). For c = ln(2.0), we observe 28 per cent loss of power when we compare the 
proportional hazards model with the cross-validation results (0264 versus 0.191), and almost 50 
per cent loss of power when we compare the proportional hazards model with the maximally 
selected procedure (0.264 versus 0 133). 

(Y = 1). 
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Table 111. Power for the Weibull distribution simulated data with y = 1 using the logistic 
relation between the covariate and risk 

P c = ln(l.5) c = ln(2.0) 

PH MS c v  
1 0.147 0.066 0.106 

(0.01) (0-01) (0.01) 

10 0.631 0-383 0445 
(0.02) (0.02) (0.01) 

20 0655 0.402 0492 
(0.02) (0.02) (0.02) 

PH 

0264 

0.972 

(0.01) 

(0.004) 
0.984 
(0.004) 

MS cv  
0.133 0.191 
(0.01) (001) 
0903 0900 
(0.01) (0.01) 

0906 0904 
(001) (0.01) 

denotes regression parameter in logistic. function relating covariate to relative risk. The PH 
(proportional hazards) method uses a linear proportional hazards model relating survival to 
covariate value. c denotes the maximum value of the relative risk between individuals. The MS 
(maximally selected) method identifies the cutpoint that provides the maximum value of the logrank 
statistic and adjusts the significance level for the process of maximal selection. The CV (cross- 
validation) method determines a maximally selected cutpoint in a subsample and uses it to 
categorize observations in the other subsample. The table shows estimates of statistical power 
determined by computer simulation and the standard error of the estimates 

As j? increases, the relationship between the covariate x and the risk 1 becomes more like a step 
function. That is, the natural logarithm of risk changes abruptly from 0 to c as the covariate 
x changes from negative to positive. For /? = 20 the power values obtained from all procedures 
increase; however, when c = ln(15) there is still 25 per cent loss of power using the cross- 
validation procedure in comparison to the proportional hazards model (0-655 versus 0.492) and 
39 per cent loss of power comparing the proportional hazards model with the maximally selected 
procedure (0.655 versus 0-402). For c = ln(2.0) the loss of power is about 10 per cent comparing 
either the cross-validation or the maximally selected procedure with the proportional hazards 
model. These results point out that we can have a substantial loss of information when we use 
cutpoint models in cases where there is a continuous relationship between covariate value and 
relative risk. Even when we need cutpoints for practical reasons, it may be advisable to establish 
the significance of the covariate with use of a continuous model. 

6. DISCUSSION 

Many reports of medical research entail dichotomization of covariates as well as outcome 
variables. For example, variables such as oestrogen receptor status or oncogene expression of 
tumour cells, respiratory function," blood glucose' and depression" are often dichotomized. In 
some cases, one views the biologic feature measured as essentially dichotomous, but the inter- 
pretation of assay results is complicated by non-homogeneous cell populations, contaminants 
and other sources of experimental variability. In other cases, we dichotomize essentially continu- 
ous measurements for ease of use. In either case, there has been little attention in the literature to 
the statistical issues involved in dichotomization of variables. For example, RaglandI4 studied the 
classification of patients as hypertensive based on their diastolic and systolic blood pressures. His 
recommendation was to investigate and report results for each possible cutpoint. He did not, 
however, address the statistical dangers of this approach. 
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We have evaluated two approaches to assess the consequences of an optimally selected 
cutpoint. It is not our purpose, however, to advocate the dichotomization of continuous 
prognostic factors. As shown in Table 111, the use of a dichotomous covariate rather than 
a continuous model based on a linear approximation may result in a substantial loss of statistical 
power. 

We have examined a cross-validation procedure for selecting a cutpoint for a continuous 
covariate. The procedure is in the spirit of the proposed split sample approach given by 
Hilsenbeck et al.’ However, while the split sample approach uses one portion of the sample for 
the selection procedure with validation of the results on the other portion, the cross-validation 
procedure uses the complete sample and thus seems more efficient. We do not, however, provide 
numerical comparisons of the two methods in this paper. As noted before, the cross-validation 
procedure may provide different cutpoints for the two subsets of the data. One uses these two 
cutpoints, however, only at  the stage of testing whether there are two different risk groups and in 
estimation of the relative risk. Once we reject the null hypothesis, we should use the full data set to 
determine a unique cutpoint for the covariate and it is that cutpoint that we recommend for future 
use. We see no purpose in even reporting the two cut-points obtained as part of the cross- 
validation. 

We compared cross-valiation with use of the maximally selected logrank procedure in terms of 
relative risk estimation and statistical power. Our simulation study has shown that the two-fold 
cross-validation procedure produced almost unbiased estimation of the relative risk when the 
true relative risk that generated the data was below 1.5. For relative risks above 1.5, the 
cross-validation procedure produced at most 5 per cent underestimation. The maximally selected 
logrank procedure overestimated the relative risk in all situations. The greatest bias existed when 
survival and covariate were independent. Both procedures produced approximately the correct 
cr-level under the null. For small values of relative risk, the cross-validation procedure achieved 
better power. However, when the relative risk increased, the power of the maximally selected 
logrank procedure was about 10 per cent higher than the power obtained from the cross- 
validation procedure. For large values of the relative risk, both procedures achieved high power. 

As the sample size increases, one would expect that the degree of downward bias in estimation 
of relative risk for the cross-validation method would decrease. The bias exists because the 
maximally selected cutpoint in one sub-sample is only an estimate of the true breakpoint. When 
that estimate is used to categorize the patients in the other sub-sample, the resulting groups are 
each mixtures of subjects with covariate values both above and below the true breakpoint. The 
relative risk for these mixed groups is necessarily less than the relative risk between individuals 
above and below the true breakpoint. 

We investigated different u-fold cross-validation schemes in the simulation study and obtained 
the best results in terms of the size of the test with use of two-fold cross-validation. We did not 
investigate using replicated u-fold cross-validation. Replicated two-fold cross-validation would 
involve repeating the two-fold cross-validation with different random splits into two subsamples. 
This would be quite computationally intensive because maximal cutpoint selection would have to 
be determined for each replication and the logrank statistic averaged over replications. Rep- 
licated cross-validation may, however, provide improved estimates of relative risk and increased 
statistical power and is worthy of further research. 

Generally in survival data analysis, one models survival as a function of several covariates. If, 
for example, one wishes to dichotomize one covariate that corresponds to a new assay while 
incorporating the standard covariates in their original scales, the method proposed by Lausen 
and Schumacher4 does not apply. It has been developed within the framework of the logrank 
statistic for testing a single binary covariate. On the other hand, one can easily generalize the 
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cross-validation procedure introduced here to  accommodate this situation. By randomly splitting 
the sample, one selects the optimal cutpoint from one subset by minimizing the p-value associated 
with the parameter of the dichotomized covariate in, for example, the proportional hazards 
model instead of for a two-sample logrank test. One uses the optimal cutpoint from each subset to  
categorize the cases in the other subset. This suggested procedure with various correlations 
between the covariates is the subject for future research. 

When dichotomization of a covariate is not an objective, there are a number of approaches one 
can use to relate covariate values to  response. In addition to the usual methods of including linear 
or linear plus quadratic terms in a model such as Cox’s proportional hazards model, there are 
available newer approaches based on smoothing splines,” regression splines16* l 7  and fractional 
polynomials.” 
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